
Rev. Adv. Mater. Technol., 2023, vol. 5, no. 4, pp. 26–34 DOI: 10.17586/2687-0568-2023-5-4-26-34 
 

This article was presented at the symposium “Micromechanics of Functional Materials”, XIII All-Russian Congress on 
Theoretical and Applied Mechanics, August 21–25, 2023, St. Petersburg, Russia 

 

 
* Corresponding author: E.V. Orlenko, e-mail: eorlenko@mail.ru 

 

© ITMO University, 2023 

On the Existence of Phonon Coherent States in Nanomaterials 

E.V. Orlenko1,*, F.E. Orlenko2 
1 Higher School of Fundamental Physical Researches, Peter the Great Saint-Petersburg Polytechnic University,  

Polytechnicheskaya, 29, St. Petersburg, 195251, Russia. 
2 Higher School of Technology and Energetics,  Saint Petersburg State University of Industrial Technologies and Design,  

Bolshaya Morskaya, 18, St. Petersburg, 191186, Russia. 
 

Article history  Abstract 

Received November 18, 2023 
Accepted December 17, 2023 
Available online December 26, 2023 

 
In our work we describe the energy transfer by thermal excitations with accounting a co-
herence in nanosized systems during heat removal. A general formalism of thermal con-
ductivity by second quantization method is proposed with an account of both the usual 
phonon model of heat transfer and the formation of coherent Schrödinger states of the 
oscillator system. An exact general form of solution for a time-dependent problem with 
arbitrary initial conditions is analytically developed. It is shown that at certain ratios of 
constants characterizing the interaction of phonons with the electronic subsystem a heat 
flow does not decay with time in the crystal. 
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1. INTRODUCTION 

Theoretical and experimental studies of recent years have 
shown that the transfer of thermal energy in dielectrics at 
the nano- and microlevel often has a quantum nature. It 
leads to new physical effects such as phonon coherence, 
thermal superconductivity, thermal echo, ballistic reso-
nance nonlinear phenomena like solitons, etc. These phe-
nomena can be used to control energy flows and to create 
fundamentally new devices. Besides the fundamental as-
pect of the problem, it will contribute to develop effective 
methods of heat removal for the design of nano/microe-
lectronic devices and devices operating in space. The spa-
tial coherence length and a temporal coherence length 
should simultaneously influence the thermal transport; 
their interplay is also critical for the engineering of na-
noscale thermal transport. On the other hand, the dimen-
sionality and system size have significant impacts on pho-
non coherence and on the coherent thermal transport. 

Coherent thermal transport, including minimum ther-
mal conductivity and Anderson localization, has been in-
tensively observed in various nanophononic crystals. 
Nanophononic crystals are artificial materials and provide 
a new opportunity to engineer thermal properties of mate-
rials using the wave nature of phonons [1–3]. Phonon co-
herence has a significant impact on phonon-phonon scat-
terings, phonon modal correlations, and interfacial phonon 
propagation, which are different from the pure particle 
picture and also make coherence a critical attribute for 
phonons [4–6]. Because of the importance of coherent pho-
nons in engineering thermal transport, the recent efforts to 
activate coherent phonon in real materials are increasing. 
Such attempts were done via a laser beam [7,8], or via the 
natural thermal fluctuations [9], which was previously stud-
ied for acoustic phonons at gigahertz frequency in optome-
chanical systems. In the paper [9], a general heat conduction 
theory is proposed to establish an original expression for the 
thermal conductivity that includes the full coherent nature 
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of phonon excitations. This expression involves both 
phonon lifetimes and coherence times. It was supposed 
the particle-like behavior predominatly follows an expo-
nential decay law ( )Cor exp( / )pt tλ λ= − τ  with the lifetime 

p
λτ  according to the conventional single-mode relaxation 

time (SMRT) approximation [10]. Besides, it was sup-
posed that a correction should be considered, as the co-
herence effect increases, in the description of the phonon 
decay by including the modal coherence time c

λτ  as fol-
lows ( ) 2 2Cor exp[ / (2 )]exp[ 4ln(2 / ( ) )]p ct t tλ λ λ= − τ − τ . The 
second Gaussian term originates from the interference 
between different modes, expressing coherence effects in 
the phonon dynamics. 

Semiconductor optomechanics based on the use of ex-
citon polaritons, is rapidly developed field due to advances 
in technologies for creating planar nanosystems. Polari-
tons are hybrid quasiparticles that are a mixture of photons 
and material excitations. Recently, polariton-pumped pho-
non lasers and dynamically tunable arrays of polariton 
parametric cavities have been implemented. A feature of 
the polariton is the presence of a resonant photoelastic in-
teraction in addition to the geometric optomechanical in-
teraction. Both exciton and photon components of the po-
lariton can interact with an acoustic wave, which can lead 
to an increase in the optomechanical interaction. Theoret-
ical study of optically-pumped excitons interaction with 
acoustic waves in planar semiconductor nanostructures in 
the strongly nonlinear regime was done in the work [11]. 
The results are applied to nonlinear sound propagation in 
the arrays of quantum wells or in the plane of Bragg sem-
iconductor microcavities hosting excitonic polaritons. 

In our work we will show that in a crystal, taking into 
account the interaction of vibrations of the crystal lattice 
with the electronic subsystem, coherent states similar to 
Schrödinger states can be formed. Taking into account the 
constant of nonlinear optomechanical interaction between 
optically pumped excitons and propagating acoustic 
waves, calculated in Ref. [11], we will show that coherent 
states during thermal transport are actually formed into a 
wave packet, and, in coordinate representation, are noth-
ing more than an oscillator with a displaced center. These 
coherent states, with a Poisson distribution of the number 
of phonons in each mode, play an important role and lead 
to characteristic time dependences of heat fluxes. At cer-
tain phonon decay times in the frequency band associated 
with this constant, a heat flux (spectral flux density in the 
frequency band) that does not decay with time can be 
formed. This behavior of the heat flow is reminiscent of 
superthermal conductivity, considered in Refs. [12–17]. 
Semiconductors, cubic boron arsenide crystals (BAs), 
have recently been discovered [12–15] to have ultra-high 

thermal conductivity compared to most conventional ma-
terials and show great promise for thermal management in 
electronics [15–17]. 

2. PHONON COHERENT STATES 

Elastic vibrations of the crystal lattice are considered as a 
set of plane waves, and in the quantum description — as a 
set of n λk  phonons with different momenta =p k  (k is the 
wave vector), being in polarization states λ (λ = 0,1,2) and 
having frequencies / 2 / 2c kν = π = ω π where ω is an an-
gular frequency. The number of phonons of each type will 
be denoted as n λk . We consider an influence of electrons 

on the phonon subsystem. We will use a notation iη  for 

the electronic state of the system, and ( )i
ii n λ= ηk  for the 

initial “electronic & phonons” state of the system. Under 
the influence of phonons, described by the interaction of 

electrons with phonons êphV , the electronic system goes 

over to the state f (or ( )f
ff n λ= ηk ). In this state it can be 

described by a set of quantum numbers fη  of the material 

matter, and phonons, characterized by a set number of 
phonons with the same wave vectors and in the same po-
larization states, ( )fn λk . As a result of the transition, one or 
more phonons are emitted or absorbed, in some polariza-
tion states with different pulses and frequencies. Differ-
ences in momenta and polarization states for phonons in-
itiating the transition and for phonons emitted/absorbed as 
a result of the transition determine the polarization char-
acteristics of the emitted or absorbed heat radiation. They 
are described by differential transition probabilities, ( )a

fidw  

(for absorption) and ( )e
fidw  (for emission). We will pay con-

siderable attention to the discussion of these quantities. 
As is well known (and will be discussed below), the 

interaction of electrons with a deformation field can be 
considered by methods of perturbation theory. According 
to the general formulae of the theory of time-dependent 
perturbations, the probability ( )fiP t  of transition from 
state i  to state f  under the influence of a perturbation 
that acts in the time interval [0, ]t  can be represented in the 
form 

( ) ( ) ( ) ( ) ( )
21 2ˆ ˆ ... .fiP t f t i f t i= + +W W   

Here the transition operators ( )1Ŵ , ( )2Ŵ , ( )3Ŵ  correspond-
ing to the harmonic perturbation can be represented as for 
one-quantum, two-quantum and so on transitions. For one-
quantum ( )1Ŵ  (one-phonon) transitions accompanied by 



28 E.V. Orlenko, F.E. Orlenko 

emission (e) or absorption (a) of one phonon, character-
ized by quantities { }, , kρπ ≡ λ ωk  whose probabilities will 
be determined mainly using the following of formulas 

( ) ( ) ( )1

0

ˆ ˆ ' ',
tif t i f V t i dt= − ∫



W  

we have 

( ) ( ) ( ) ( ) ( )' 'ˆ ˆ ˆ' ,k ke ai t i t
p pV t V e V eω − ω= π + π  

where 

( ) ( ) ( ) ( )( )† *ˆˆ ˆ0 ,
2

e
p

k

V b
m λ λπ = −γ ⋅
ω k kα r

A

( ) ( ) ( ) ( )( )ˆˆ ˆ0 .
2

a
p

k

V b
m λ λπ = −γ ⋅
ω k kα r

A  (1) 

Here 

†
ˆ ˆˆ ˆˆ ˆ,

2 2
k k

k k

P P
b Q b Q

i i
λ λ

λ λ λ λ

   ω ω
= + = −      ω ω   

k k
k k k k

 

 (2) 

are the operators of creation †b̂ λk  and annihilation b̂ λk  of the 
phonon in the state with the wave vector k and polariza-

tion λ, †
' ' ' '

ˆ ˆ ,b bλ λ λ λ
  = δ δ k k k k  ( )λk rA  is a coordinate part of 

the vector displacement operator ( )ˆ ,n tξ r  of the nth site of 

the crystal lattice: 

( ) ,i
k e

N
⋅

λ λ
k r

k r e1
A =  

( ) ( ) ( )† *

,

ˆ ˆ ˆ,
2

k ki t i t
n k k

k

t b e b e
m

− ω ω
λ λ λ λ

λ

 + ω∑ k k
k

ξ r r r

= A A  =

( ) ( ) ( ) ( )† *

,

ˆ ˆ .
2 k k

k

b t b t
m λ λ λ λ

λ

 + ω∑ k k
k

r r

= A A  (3) 

The operators †ˆ ,b λk  b̂ λk  of creation and annihilation, are 
Hermitian conjugated one to another. 

In isotropic medium, the deformation potential deter-
mines the interaction energy operator of the electron sys-
tem (exciton) with acoustic phonons 

ˆ ˆ
d ephW V≡ =  

( ) †
' , ,

,

ˆ ˆ ( ).
2

i i
i f f i

k

N i c c b e b e
m

λ λ⋅ − ⋅+
→ σ σ λ − λ

λ

= −γ ⋅ −
ω∑ k r k r

k k k
k

e k


 (4) 

Here, creation and annihilation operators †
'ˆ ˆf ic cσ σ for elec-

trons in excitons states ',i fσ ση η  are fermionic opera-

tors: † †
' ' 'ˆ ˆ ˆ ˆf i i f ifc c c cσ σ σ σ σσ+ = δ δ . Now we mean the initial and 

final states as “exciton+phonon” states are described by 
vectors ( ) ( )

, , ',i f
i fi n f nλ σ λ σ= η = ηk k . 

The operator †ˆ ˆn̂ b bλ λ λ=k k k  corresponds to measurable 
physical quantity, which we denote by n λk  and means a 
certain number of energy quanta in a given mode (pho-
nons), the eigenstate is denoted as n λk . Then it will be 
fair to write 

† .ˆ ˆn̂ n b b n n nλ λ λ λ λ λ λ= =k k k k k k k  

They are characterized by the fact that the number of pho-
nons in them is precisely defined, while the phase in them 
is absolutely undefined. This combination of operators, up 
to a factor, the dimension of energy, determines the oper-
ator of the energy of the crystal vibrations: 

( )
2 2

0
1

1

ˆ ˆˆ
2 2

N

i ii
i

m
−

=

γ = + − = 
 

∑ ξ ξ ξ

H

† 1 1ˆ ˆ ˆ .
2 2k kb b nλ λ λ

λ λ

   = ω + = ω +   
   

∑ ∑k k k
k k
   (5) 

Thus, there is a set of eigenvalues {n} of the indicated 
operator and the corresponding set of states { n

λk
} corre-

sponding, as a solution of the Sturm–Liouville problem, to 
the condition of orthogonality mnm nλ λ = δk k  and com-

pleteness 1̂
n

n n
λ λ

=∑ k k
. We define here |ket⟩-vector 

of state |n⟩ as an infinite-dimensional one-column matrix, 
and, accordingly, its conjugate ⟨bra|-vector ⟨n| as an infi-
nite-dimensional one-row matrix, that is, the indicated 
property completeness is written as an infinite-dimen-
sional unit matrix. The matrix elements of the operators of 
creation and annihilation of the energy quanta (phonon) in 
a given state are  

† †ˆ ˆ1 1 .n b n n b n nλ λ λ λ λ λ λ− = − =k k k k k k k  (6) 

The considered basis of Fock states is convenient in 
those cases when the processes of interaction of a weakly 
intense deformation field with an electronic system (in ex-
citon state), when we are dealing with one-phonon transi-
tions inside material electrons, are described. 

Next, we will discuss one-quantum transitions in crys-
tals. Total Hamiltonian including “exciton-phonon” inter-
action is 

0 † 1ˆ ˆˆˆ ˆ
2kV b bλ λ

λ

  + = ω + +  
 

∑ k k
k
H = H  

( ) { }† †ˆ ˆˆ ˆ1 .
2 k f f i i

k

i e i c c b b
m N λ λ λ

 + − − γ ⋅ η η +   ω  
k ke k



 

 (7) 
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Here Eq. (7) is obtained after averaging (4) on the electron 
components in the exciton polarization states, where the 
matrix elements ˆ

f eph iVη η  calculated over the initial 
and final states of the electronic system. Then we have a 
Hamiltonian of phonon subsystem with interaction, where 
instead of γ as in Eq. (4), we have the constant Ξ, calcu-
lated in Ref. [11], which, in addition to the deformation 
potential constant 2 2( ) /U x xγ = ∂ ∂ , (γ ~ 10 eV), also con-
tains the contribution of the polarization potential, where 
P is the amplitude of the exciton  polarization, E is the 
Young's modulus, this field takes into account both the 
mechanical and exciton contributions: 

( ) ( ){ }† †1ˆ ˆ ˆ ˆˆ ' ' ,
2k b b b t b tλ λ λ λ λ

λ

  ω + −Λ +  
  

∑ k k k k k
k
H =  

†ˆ ˆ
2k f f i i

k

i ei c c
m Nλ λ

 Λ = − γ ⋅ η η =  ω 
k e k 



1 ,
2k

k

e
m Nλ= Ξ ⋅

ω
e k



 

2
241 .P

 πγ
Ξ = γ + ω E

 (8) 

To diagonalize Hamiltonian of phonon system in inter-
action (8), we seek a unitary transformation for the crea-
tion-annihilation operators in the following way 

† †ˆ ,b B u ∗
λ λ λ= +k k k  

ˆ ,b B uλ λ λ= +k k k  
†

' ' ' ' .B Bλ λ λ λ  = δ δ k k k k  (9) 

Here function / ( )ku λ λ= Λ ωk k   is real. Then, Hamiltonian 
(8) in new representation has a diagonal form 

,ˆ ˆ
λ

λ= ∑
k

kH H  

( )2
† 2

.1ˆ
2k

k
B B λ

λ λ λ
 
 
 

Λ
= ω + −

ω
k

k k k



H  (10) 

Such a transformation can be performed under each 
mode by using the following unitary transformation oper-
ator [18]  

( ) ( )†ˆ ˆ*
,ˆ b b

U e λ λ λ λα −α

λα = k k k k

k  

.
k

u λ
λ λ

Λ
=

ω
α = k

k k


 (11) 

Appling this unitary transformation operator on to vacuum 
state of each mode, we get the new modes vacuum vector 
in the form: 

( ) ( )†ˆ ˆ*ˆ0 0 0
b b

U n e nλ λ λ λα −α

λ λ λ λ =ν = = α = = =k k k k

k k k k

( )
2

2

0
.

!
e

λ
να ∞− λ

λ
ν=

α
= ν = α

ν
∑

k
k

k
 (12) 

It is easy to show, that this coherent state 
λ

α
k

 has the fol-
lowing properties [18]: 

1) It is the eigenvector of annihilation operator 
ˆ .b λ λλ λ

α = α αk kk k  
2) An average number of phonons in this state is de-

pendent on the interaction constant 
2

2†ˆ ˆ ,
k

n b b λ
λ λ λ

 Λ
= α α = α =  ω 

k
k k k



 

( )/ 2

0
.

!

n

n

n

n
e n

n
λ

∞
λ−

λ λ
=

α = ∑k
k

k k
 (13) 

3) A distribution function on the number of phonons 
in each mode for such coherent state is a Poisson distribu-
tion 

!
( ) .

n
n n

e
n

W n λ− λ
λ = k k

k  (14) 

4) These coherent states are non-orthogonal if corre-
spond to different average numbers; nevertheless, they are 
fulfilled to the fullness property [18]: 

( )2
/ 2exp ,K N 

 
 

α β = − −  

( )22
,exp K N 

 
 

α β = − −  (15) 

2

0
.1 1̂

n
d n n

∞

=
α α α = =

π ∑∫  (16) 

The eigen energy of each mode for coherent state for 
Hamiltonian (10) is 

( )22 21 1
2 2

k
k

k k

λ λ
λ λ λ

Λ  Λ ω ε = ω α + − = Λ − +   ω ω   
k k

k k k




 

, 

where Eq.(11) for λαk  was taken into account. In contrary 
to the Fock-states, obtained coherent states are character-
ized by undetermined number of phonon in the given 
mode (only n

λk
 is known, see Eq. (13)), but exact deter-

mined phase. It is important to remind, that despite an op-
erator of phase ϕ̂  does not exist, two operators ( )ˆie ϕ  and 

( )ˆ ie− ϕ  are used, their commutation relation is 

( ) ( )ˆ, i in e eϕ − ϕ  = −   [18,20]. 
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3. TIME-DEPENDENT PROBLEM FOR PHONON 
COHERENT STATES 

Let us consider a situation where the optomechanical in-
teraction between optically pumped excitons and propa-
gating acoustic waves explicitly depends on time, which 
is due to the polariton generation of excitons under the ac-
tion of a laser pulse on the nanostructure, then instead 
Eq. (8) we have 

( ) 1( ) .
2k

k

t e t
m Nλ λΛ = Ξ ⋅

ωk e k


 (17) 

The general solution of the time-dependent Schrödinger 
equation 

( )( ) ˆ ( )
t

t
i t tλ

λ λ

∂ Ψ
∂

= Ψk
k k H  

with the Hamiltonian 

( ) ( ){ }† †1ˆ ˆ ˆ ˆˆ
2k tb b b bλ λ λ λ λ λ

  − 
 

ω + Λ +k k k k k ktH =  

has a form 
† †( ) ( ) ( ) ,( ) ( ) ( )t b t b t b bt C t e e eλ λ λ λ λ λ λ

λ λ λ
α β γΨ = Ψ −∞k k k k k k k

k k k

 (18) 

where a vector ( )λΨ −∞k  corresponds to the initial state 
of phonon system before acting the laser pulse onto the 
nanocrystal. The equation system for determination of co-
efficients ( )tλαk , ( )tλβk , ( )tλγk  and ( )C tλk  is obtained in 
general form by the same way as in Ref. [19] 

( ) ,t iλγ = − ωk k  

( )
( ) ( ) ,

i t
t i t λ

λ λ λ

Λ
β − ω β = k

k k k




( )
( ) ( ) ,

i t
t i t λ

λ λ

Λ
α + ω α = k

k k k



 

( )( )
( ) ( ) ( ) .

( ) 2
C t it t t i
C t

λ
λ λ λ

λ

− α β −β ω = − ωk
k k k k k

k



  (19) 

The general solution of the time-dependent problem is 
presented in the quadrature’s form 

( )

/ 2

'
' ''

2

( )

1exp ' ( ') '' ( '') ,

i t

t t
i t i t

C t e

dt t e dt t e

− ω
λ

− ω ω
λ λ

−∞ −∞

= ×

   × − Λ Λ  
   

∫ ∫

k

k k


 

'( ) ( ') ',
ti t

i tiet t e dt
− ω

ω
λ λ

−∞

α = Λ∫
k

k
k k



 

'( ) ( ') ',
ti t

i tiet t e dt
ω

− ω
λ λ

−∞

β = Λ∫
k

k
k k



 

( ) .t i tλγ = − ωk k  (20) 

We consider the evolution of a phonon “wave packet” 
due to its appearance by interaction with an electronic 
wave packet generated by the exciton component of a po-
lariton in the form ( ) 0 exp( / )t tλ λΛ = Λ − τk k . We assume, 
that initial state of the phonon system corresponds to vac-
uum state and we use the initial conditions for the coeffi-
cients (20) in the following form 

0 ,( )λ λ
=Ψ −∞k k ( ) 0,λα −∞ =k  

( ) 0,λβ −∞ =k ( ) 1.С λ −∞ =k  (21) 

With respect to initial conditions (21) we have the solution 
for the wave vector as follows 

† †( ) ( ) ( )( ) ( ) 0t b t b t b bt C t e e eλ λ λ
λ λ λ

α β γΨ = =k k k
k k k

( ) ( )†

0 0
( ) 0 ( ) ,

! !
t t

C t b C t
ν ν∞ ∞

λ λν
λ λ λ λ

ν= ν=

α α
= = ν

ν ν
∑ ∑k k

k k k k
 (22) 

obviously due to the equation 

( )† ( )

0

( ) ( ) ˆ0 0
!

t bt b t b b t
e ne e λλ λ

ν∞
β λ ν

λλ λ
ν=

β γ γ
= =

ν∑kk k k
kk k

( ) 1̂ 0 0 .t be λ
λ

β= ⋅ =k
k

 (23) 

After integration with accounting of initial conditions 
(21), the coefficients have the form 

( )0 2

2( )
11

k k

t
i t i t

t
kk

ie e et
i

−− ω ωτ

λ λ →∞

 
τ τ α = Λ − → 

− τω+ τω  
k k



( )0 2

2 ,
1

ki t

t
k

ie− ω

λ→∞

τ
→ Λ

+ τω
k



 

( )0 2

2( ) ,
1

ki t

k

iet
ω

λ

τ
β = Λ

+ ω τ
k



 

( ) ,t i tλγ = − ωk  

2

2
/2 0

2 2
2

2

( ) exp .
2 1

ki t

t

k

C t e− ω
λ →∞

  
  Λ τ → −    +ω   τ   

k


 (24) 

We prove that with accounting for Eq. (24) the normal-
ization condition is fully satisfied: 

( ) ( ) 2
2

2 2

0
( ) ( ) ( ) ( ) 1,

!
tt

t t C t C t e
ν

∞
α

ν=

α
Ψ Ψ = = =

ν∑
( ) ( ) 22 1

2 2( ) , ( ) .
ttC t e C t e

− α− α= ⇒ =  (25) 
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Then, a heat flux of energy carried by phonons in coherent 
states for given mode kλ is 

ˆ( ) ( )sj c t n tλ λ λλ
= ω Ψ Ψ =k k k kk


( ) ( )
2

2 2( ) ,s
tc t C t e λ

λ λ

α
= ω α k

k k  (26) 

where /s kc k= ω  is a sound velocity (phase velocity of the 
given mode). With respect to the normalization condition 
(25), the spectral density of the energy flux is 
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A total energy flux 
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With account of expression binding the sound velocity sc  

and Debye frequency Dω  3
4

2 3
D

sc
n

 
 
 

ω π=
π

 and ion con-

centration n in crystal, we have for the total energy flux 
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The dependence of the total energy flux on the combi-
nation of the Debye frequency Dω  and the coherence time τ 
is presented in Figure 1. It is clearly seen that for certain 
ratios of these parameters, namely, ~ 2Dx = τω , the value 
of the total energy flux does not decay with time. Taking 
into account the Debye frequencies of acoustic phonons 

~ 12.8Dω  THz and the characteristic coherence times 
13~ 10−τ  s indicated in Ref. [21] for boron arsenide (BAs), 

it is clearly seen that they fit into the specified estimate, 
which can be associated with the regime of thermal super-
conductivity [14–17,21–24]. In Ref. [24], the dynamics of 
coherent optical phonons in tellurium after exposure to an 

intense femtosecond laser pulse is studied. The main mech-
anism of anomalous thermal phenomena in a material, up to 
a “non-temperature” phase transition, is considered to be the 
so-called DECP (Displacive Excitation of Coherent Pho-
nons). It is shown that the time required for a carrier to 
diffuse over one absorption length (50 nm) is about 
600 fs = 6×10–13 s, the characteristic frequencies at which 
resonant effects of thermal conductivity are observed are 
3–3.6 THz. Our estimate of the parameter Dx = τω  for this 
system is x = 1.8–2.16, which corresponds to the undamped 
energy flow shown in Fig. 1. Moreover, in order not to re-
sort to assessing the behavior of nanosized objects using ref-
erence values for the speed of sound in a crystal, or the De-
bye frequency obtained for macroscopic materials, you can 
use the microscopic value of the Debye frequency, as the 
maximum possible frequency in the propagation of har-
monic excitation, corresponding to the minimum length 
wave equal to two a lattice constants of a particular nano-

crystal: max
min

2
D a

m m
π γ γ

ω = ω = = π
λ

. 

4. COHERENT HEAT FLUX AT FINITE 
TEMPERATURE 

Let us now consider the problem for finite temperatures. 
Here it is necessary to take into account the entire contin-
uum of modes across the entire spectrum of allowed fre-
quencies. The spectral heat flux density, taking into ac-
count the finite temperature, must take into account the 
thermal distribution of the number of phonons in a given 
mode (Planck distribution function). 
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Fig. 1. Total energy flow as a function of dimensionless time 
t = t / τ (in units of decay time) and x = ωτ. At x ~ 2 the flow is 
maximum and the flow does not decay with time. 
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 (30) 

The spectral flux density accounts either the Planck equilib-
rium distribution and orders of magnitude for the coherence 
time τ determined by the characteristic relaxation times of 
the electronic system in a solid, that is, 13~ 10−τ  s. A pa-
rameter included in the Planck distribution function / T  in 
the temperature range from 300 to 1000 K, in order of mag-
nitude corresponds to the range of values 10–14–10–15 s. The 
spectral flux density taking into account the Planck equilib-
rium distribution is presented in Figure 2, where denotations 

/t t= τ , x = ωτ are used. For a given phonon relaxation 
time, there is a resonance frequency * ~ 3 / 2ω τ, when the 
spectral flux density does not decay with time, which can 
be associated with the phenomenon of thermal supercon-
ductivity observed in experiments [24]. 

Let us consider the total flow taking into account the tem-
perature in the low-temperature limit, 0T ≤ Λ  (here the tem-
perature is written in the energy scale). In the subsequent in-
tegral the momentum relaxation time is quite long / Tτ >>   
due to 13~ 10−τ , 14 15/ ~ 10 10T − −− , / ( ) ~ 0.01 0.1Tτ − . 
In other words, we are dealing with a quasi-adiabatic in-
teraction, when the system can be described by the Planck 
equilibrium distribution function. The condition of a small 
gradient means that the inequality sc lτ <<  is satisfied, 
where l is the spatial scale of temperature change. In other 
words, the temperature change itself occurs over relatively 
long times, thus, the integration of the spectral flux density 
over frequency, taking into account temperature, can be 
performed as at a constant temperature. 
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1. Low temperature limit: 2,Dτω   / 1D Tω >> . 
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The result is the same as for thermal phonons in the absence 
of coherence, if the coherence factor is 0 / 1τΛ → . 

2. High temperature limit: 2,Dτω   / ~ 1D Tω . 
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We arrive at the classical linear dependence on temperature, 
which occurs in the high-temperature limit in a macroscopic 
crystal. However, here there is also a coherent contribution 
directly related to the coherence time τ, decayed exponen-
tially with time, which is quite consistent with the conclu-
sions of Refs. [9,23,24] for the high temperature limit tak-
ing into account the coherence of phonons. 

5. RESULTS AND DISCUSSIONS 

Pulsed excitation and phase-sensitive detection of coherent 
phonons and phonon-polaritons provide detailed insight 
into the dynamic properties of matter. Experiments [24] 
based on optical pumping methods with femtosecond time 
resolution make it possible to simultaneously determine the 
amplitude and phase of coherent grating motion. Frequen-
cies in the terahertz range and dephasing times in the pico-
second range are obtained with high accuracy, especially in 
semiconductors and semiconductor heterostructures, where 
the coherent phonon mode and free carriers are excited sim-
ultaneously, which carries important information about the 
interaction of carriers with phonons far from equilibrium. 
Experiments on the generation of LO phonons are carried 
out in Sb, where the A mode is similarly manipulated. In 
mixed BiSb crystals, Bi-Bi, Bi-Sb and Sb-Sb vibrations can 
be amplified and suppressed using a series of femtosecond 

Fig. 2. The spectral flux density for the finite temperature. Here   
denotations t = t / τ, x = ωτ are used. For a given phonon relaxa-
tion time, there is a resonance frequency , when the 
spectral flux density does not decay with time. 
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pulses. In all of these experiments, the general pattern dis-
covered in our work is observed, namely: the very effect of 
amplification of LO phonons with undamped thermal con-
ductivity occurs in various materials when the criterion 

* ~ 2x = τω  is met, where τ is the temporal coherence, *ω  
is the frequency at which the maximum spectral energy den-
sity occurs. 

In this work τ = 0.25 ps = 0.25×10–12 s, * 8.8ω =  THz = 
8.8×1012 Hz, * 2.2τω = . For bulk GaAs: τ = 0.25 ps, 

* 9ω =  THz, * 2.25,x = τω =  for GaAs/Al0.3Ga0.7As su-
perlattice: τ = 0.2 ps, * 8.5ω =  THz, * 1.7x = τω = . For iso-
tropic Te crystal: * 3.5ω =  THz, τ = 0.6 ps, * 2.1x = τω = . 
For anisotropic Te crystal: * 4.2ω =  THz, τ = 0.5 ps, 

* 2.1x = τω = . 
In the terahertz emission experiment, for InP crystal: 

wide peak at * 1ω =  THz, τ = 2 ps, * 2x = τω = . 
In a study of coherent phonon dynamics in a Te single 

crystal excited by amplified CPM laser pulses with a pho-
ton energy of 2 eV: 
for Te crystal: at * 3.6ω =  THz, τ = 0.75 ps, * 2.7;x = τω =  
for HTSC material, YBa2Cu3O7-thin film: Ba mode in the 
CuO2 plane: * 3.6ω =  THz, τ = 0.7 ps, * 2.52;x = τω =  Cu 
mode (2) in the CuO2 plane: * 4.2ω =  THz, τ = 0.7 ps, 

* 2.x = τω =  

REFERENCES 

[1] M.N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M.T. 
Bulsara, A.J. Schmidt, A.J. Minnich, S. Chen, M.S. 
Dresselhaus, Z. Ren, E.A. Fitzgerald, G. Chen, Coherent 
Phonon Heat Conduction in Superlattices, Science, 2012, 
vol. 338, no. 6109, pp. 936–939. 

[2] J. Ravichandran, A.K. Yadav, R. Cheaito, P.B. Rossen, 
A. Soukiassian, S.J. Suresha, J.C. Duda, B.M. Foley, C.-
H. Lee, Y. Zhu, A.W. Lichtenberger, J.E. Moore, D.A. 
Muller, D.G. Schlom, P.E. Hopkins, A. Majumdar, R. 
Ramesh, M.A. Zurbuchen, Crossover from incoherent to 
coherent phonon scattering in epitaxial oxide superlat-
tices, Nat. Mater., 2014, vol. 13, no. 2, pp. 168–172. 

[3] Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, S. 
Volz, Coherent thermal transport in nano-phononic 
crystals: An overview, APL Mater., 2021, vol. 9, no. 8, 
art. no. 081102. 

[4] M. Simoncelli, N. Marzari, F. Mauri, Unified theory of 
thermal transport in crystals and glasses, Nat. Phys., 
2019, vol. 15, no. 8, pp. 809–813 (2019). 

[5] L. Isaeva, G. Barbalinardo, D. Donadio, S. Baroni, Model-
ing heat transport in crystals and glasses from a unified 
lattice-dynamical approach, Nat. Commun., 2019, vol. 10, 
art. no. 3853. 

[6] Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, S. 
Volz, Generalized decay law for particlelike and wave-
like thermal phonons, Phys. Rev. B, 2021, vol. 103, 
no. 18, art. no. 184307. 

[7] N.D. Lanzillotti-Kimura, A. Fainstein, A. Huynh, B. Per-
rin, B. Jusserand, A. Miard, A. Lemaître, Coherent Gen-
eration of Acoustic Phonons in an Optical Microcavity, 
Phys. Rev. Lett., 2007, vol. 99, no. 21, art. no. 217405. 

[8] Y. Shinohara, K. Yabana, Y. Kawashita, J.-I. Iwata, T. 
Otobe, G.F. Bertsch, Coherent phonon generation in 
time-dependent density functional theory, Phys. Rev. B, 
2010, vol. 82, no. 15, art. no. 155110. 

[9] Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, S. 
Volz, Thermal self-synchronization of nano-objects, J. 
Appl. Phys., 2021, vol. 130, no. 8, art. no. 084301. 

[10] A. Togo, I. Tanaka, First principles phonon calculations 
in materials science, Scr. Mater., 2015, vol. 108, pp. 1–5. 

[11] A.V. Yulin, A.V. Poshakinskiy, A.N. Poddubny, Opto-
mechanical Lasing and Domain Walls Driven by Exciton-
Phonon Interactions, J. Exp. Theor. Phys., 2022, vol. 134, 
no. 2, pp. 171–182. 

[12] L. Lindsay, D.A. Broido, T.L. Reinecke, First-Principles 
Determination of Ultrahigh Thermal Conductivity of Bo-
ron Arsenide: A Competitor for Diamond?, Phys. Rev. 
Lett., 2013, vol. 111, no. 2, art. no. 025901. 

[13] J.S.Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Experimental 
observation of high thermal conductivity in boron arse-
nide, Science, 2018, vol. 361, no. 6402, pp. 575–578. 

[14] S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, 
D.G. Cahill, B. Lv, Science, 2018, vol. 361, no. 6402, 
pp. 579–581. 

[15] F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. 
Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu, M. Goni, 
Z. Ding, J. Sun, et al., Unusual high thermal conductivity 
in boron arsenide bulk crystals, Science, 2018, vol. 361, 
no. 6402, pp. 582–585. 

[16] J.S. Kang, M. Li, H. Wu, H. Nguyen, T. Aoki, Y. Hu, 
Integration of boron arsenide cooling substrates into gal-
lium nitride devices, Nat. Electron., 2021, vol. 4, no. 6, 
pp. 416–423. 

[17] Y. Cui, Z. Qin, H. Wu, M. Li, Y. Hu, Flexible thermal 
interface based on self-assembled boron arsenide for 
high-performance thermal management, Nat. Commun., 
2021, vol. 12, art. no. 1284. 

[18] A.N. Baz, Ya.B. Zeldovich, A.M. Perelomov, Scattering, 
reactions and decays in non-relativistic quantum me-
chanics (Rasseyaniye, reaktsii i raspady v nerelyativ-
istskoy kvantovoy mehanike), Nauka, Fizmatlit, Moscow, 
1971, 543 p. (in Russian). 

[19] E.V. Orlenko, V.K. Khersonsky, Emission and Absorption 
of Photons in Quantum Transitions. Coherent States, in: 
Quantum Science: The Frontier of Physics and Chemistry, 
ed. by T. Onishi, Springer , Singapore, 2022, pp. 349–404. 

[20] P. Carruthers, M.M. Nieto, Phase and Angle Variables 
in Quantum Mechanics, Rev. Mod. Phys., 1968, vol. 40, 
no. 2, pp. 411–440. 

[21] S. Li, Z. Qin, H. Wu, M. Li, M. Kunz, A. Alatas, A. 
Kavner, Y. Hu, Anomalous thermal transport under 
high pressure in boron arsenide, Nature, 2022, vol. 612, 
no. 7940, pp. 459–464. 

[22] R. Berman, F.E. Simon, J. Wilks, Thermal Conductivity 
of Dielectric Crystals: The ‘Umklapp’ Process, Nature, 
1951, vol. 168, no. 4268, pp. 277–280. 

[23] S. Hunsche, K. Wieneke, T. Dekorst, H.Kurz, Impulsive 
Softening of Coherent Phonons in Tellurium, Phys. Rev. 
Lett., 1995, vol. 75, no. 9, pp. 1815–1818. 

[24] T. Dekorsy, G.C. Cho, H. Kurz, Coherent phonons in con-
densed media, in: Light Scattering in Solids VIII, ed. by M. 
Cardona, G. Güntherodt, Topics in Applied Physics, vol. 
76, Springer, Berlin, Heidelberg, 2000, pp. 169–209. 

 

https://doi.org/10.1126/science.1225549
https://doi.org/10.1126/science.1225549
https://doi.org/10.1126/science.1225549
https://doi.org/10.1126/science.1225549
https://doi.org/10.1126/science.1225549
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1038/nmat3826
https://doi.org/10.1063/5.0059024
https://doi.org/10.1063/5.0059024
https://doi.org/10.1063/5.0059024
https://doi.org/10.1063/5.0059024
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1103/PhysRevB.103.184307
https://doi.org/10.1103/PhysRevB.103.184307
https://doi.org/10.1103/PhysRevB.103.184307
https://doi.org/10.1103/PhysRevB.103.184307
https://doi.org/10.1103/PhysRevLett.99.217405
https://doi.org/10.1103/PhysRevLett.99.217405
https://doi.org/10.1103/PhysRevLett.99.217405
https://doi.org/10.1103/PhysRevLett.99.217405
https://doi.org/10.1103/PhysRevB.82.155110
https://doi.org/10.1103/PhysRevB.82.155110
https://doi.org/10.1103/PhysRevB.82.155110
https://doi.org/10.1103/PhysRevB.82.155110
https://doi.org/10.1063/5.0058252
https://doi.org/10.1063/5.0058252
https://doi.org/10.1063/5.0058252
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1134/S1063776122010058
https://doi.org/10.1134/S1063776122010058
https://doi.org/10.1134/S1063776122010058
https://doi.org/10.1134/S1063776122010058
https://doi.org/10.1103/PhysRevLett.111.025901
https://doi.org/10.1103/PhysRevLett.111.025901
https://doi.org/10.1103/PhysRevLett.111.025901
https://doi.org/10.1103/PhysRevLett.111.025901
https://doi.org/10.1126/science.aat5522
https://doi.org/10.1126/science.aat5522
https://doi.org/10.1126/science.aat5522
https://doi.org/10.1126/science.aat8982
https://doi.org/10.1126/science.aat8982
https://doi.org/10.1126/science.aat8982
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1038/s41928-021-00595-9
https://doi.org/10.1038/s41928-021-00595-9
https://doi.org/10.1038/s41928-021-00595-9
https://doi.org/10.1038/s41928-021-00595-9
https://doi.org/10.1038/s41467-021-21531-7
https://doi.org/10.1038/s41467-021-21531-7
https://doi.org/10.1038/s41467-021-21531-7
https://doi.org/10.1038/s41467-021-21531-7
https://doi.org/10.1007/978-981-19-4421-5_6
https://doi.org/10.1007/978-981-19-4421-5_6
https://doi.org/10.1007/978-981-19-4421-5_6
https://doi.org/10.1007/978-981-19-4421-5_6
https://doi.org/10.1103/RevModPhys.40.411
https://doi.org/10.1103/RevModPhys.40.411
https://doi.org/10.1103/RevModPhys.40.411
https://doi.org/10.1038/s41586-022-05381-x
https://doi.org/10.1038/s41586-022-05381-x
https://doi.org/10.1038/s41586-022-05381-x
https://doi.org/10.1038/s41586-022-05381-x
https://doi.org/10.1038/168277a0
https://doi.org/10.1038/168277a0
https://doi.org/10.1038/168277a0
https://doi.org/10.1103/PhysRevLett.75.1815
https://doi.org/10.1103/PhysRevLett.75.1815
https://doi.org/10.1103/PhysRevLett.75.1815
https://doi.org/10.1007/BFb0084242
https://doi.org/10.1007/BFb0084242
https://doi.org/10.1007/BFb0084242
https://doi.org/10.1007/BFb0084242


34 E.V. Orlenko, F.E. Orlenko 

УДК 538.94:538.931:538.975:538.913:538.911 

О существовании фононных когерентных состояний  
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Аннотация. Работа посвящена описанию переноса энергии тепловыми возбуждениями с учетом их когерентности в нанораз-
мерных системах при теплоотводе. Предложен общий формализм теплопроводности, учитывающий, как обычную фононную 
модель теплопередачи, так и образование когерентных шредингеровских состояний колебательной системы. Аналитически 
получено точное решение нестационарной задачи с произвольными начальными условиями. Показано, что при определенных 
соотношениях констант, характеризующих взаимодействие фононов с электронной подсистемой, тепловой поток в кристалле 
не затухает со временем. 

Ключевые слова: когерентные состояния; когерентные волны; когерентный тепловой поток; нанокристаллы; тепловая сверх-
проводимость 


